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Through the use of the second virial coefficient data, optimized parameters and 
exponents of the Mie (n,m) potential energy function are derived for a number of 
symmetric groups of molecules. In the optimizations performed, parameters of the 
potential function are varied for each molecule, but the exponents of the potential 
function are taken as functions of the shape of the groups of molecules considered. 
It is concluded that the attractive exponent, m = 7, is shared by all the symmetric 
groups considered. The repulsive exponent, n, is varied according to the shape of 
the molecules. Also, in this report, newly calculated parameters of the Lennard- 
Jones (12,6) and Mie (14,7) potential energy functions for 33 different symmetric 
and nonsymmetric molecules are reported. Results indicate that, generally, the 
Mie (14,7) pair-potential energy function is a better fit for the second virial 
coefficient data than the Lennard-Jones (12,6) function. 

KEY WORDS: intermolecular potential energy function; second virial coeffi- 
cient; Mie potential function; Lennard-Jones potential function. 

1. I N T R O D U C T I O N  

There exists a great deal of interest in the scientific community for develop- 
ment of intermolecular potential energy functions to be used in statistical 
mechanical prediction of properties of matter. Potential energy functions of 
simple spherical molecules are very well known [1]. For nonspherical mole- 
cules, attempts are under way to develop realistic potential energy functions 
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that are generally dependent on both distances and orientations of the 
segments of interacting molecules [1-4]. But, the more sophisticated a 
potential energy function is, the less likely it will be a candidate for use in 
practical problems of statistical mechanical predictions. 

In the present report, an optimization technique is presented through 
which we are able to modify the exponents of simple potential energy 
functions in order to make them applicable for nonspherical molecules. 
Specifically, the Mie (n,m) potential energy function is used in this study. In 
order to draw a conclusion about the variation of exponents of the potential 
function with the shape of molecules, this study is made about the symmetric 
molecules only. Also, due to the abundance of the second virial coefficient 
data for a variety of molecules, the present optimization study is based merely 
on the least-square fitting of the second virial coefficient data. However, the 
technique presented here can be also applied to other potential energy 
functions and with the use of other thermophysical properties, when they 
become available. 

2. WORKING EQUATIONS 

The Lennard-Jones potential function has been most widely used for 
thermodynamic and transport property prediction of simple substances in 
both pure and mixture states and in all phases of matter. However, the 
Lennard-Jones potential function [5], 

(1) 

is a special case of the Mie (n,m) potential model [6], 

when n and m are replaced by 12 and 6. In Eqs. (1) and (2), E is the 
intermolecular energy parameter for which q~m~n -- --E, o- is the intermolecular 
length parameter, for which q~(e) = 0 is the intermolecular distance. In the 
Lennard-Jones potential function, the choice of exponent "6" is consistent 
with the lowest exponent of the London dispersion forces between spherical- 
nonpolar molecules, while exponent "12" is rather arbitrary and is chosen for 
simplicity. In other words, instead of exponent "12" in Eq. (1), one may 
choose an exponent that is larger than "6" in order to have a model potential 
to be fitted to pair-intermolecular potential data or to be used in thermophysi- 
cal property computations [1, 7, 8]. 

Since exponent "6" in Eq. (1) is only a good approximation to London 
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dispersion forces for spherical nonpolar molecules, and since exponent "12" is 
an arbitrary number, it seems more appropriate to choose Eq. (2) for 
pair-potential models of nonspherical molecules. Then one may find expo- 
nents n and m, as well as coefficients ~ and o-, for every interacting pair of 
nonspherical molecules, by fitting pair-potential data to Eq. (2) or by using 
Eq. (2) in fitting thermophysical property data. It should be, however, 
pointed out that while coefficients c and ~r in Eq. (2) are expected to be 
different for different molecules, exponents n and m should be dependent only 
on the shape of molecules considered. As a result in using Eq. (2) for fitting 
purposes, one shold develop an algorithm through which unique values of n 
and m are obtained for different molecules with similar shapes. In the present 
report, the second virial coefficient data are used to find the most approriate 
exponents of Eq. (2) for different groups of symmetric molecules with similar 
shapes and the most appropriate values of e and o- for each individual 
molecule. 

Similar to the case of the Lennard-Jones potential function [1, 7, 8], by 
replacing Eq. (2) in the second virial coefficient relation, 

B(T) 27rNA(~--T) L~r3dr Or (3) 

we obtain the following power series for the second virial coefficient of the 
Mie (n,m) potential function [9]: 

B(T) =n 3b~ ~.o f.\~] l a lu<" rn)+3]/n ~ (~) (4) 

where 

2 
bo =- = ~ N ~  ~ (5) 

3 

kn - ml \rnl 
(6) 

T* =-- kT/e (7) 

NA is the Avogadro's number and T is a gamma-function. For the case of the 
Lennard-Jones potential function, Eq. (4) reduces to the following relation: 

(8) 
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The power series convergences of Eqs. (4) and (8) are good for large values of 
T*, while many  terms are needed when T* < 1 in order for the above power 
series to converge [10-17]. 

In least-square fitting of Eq. (4) to the second virial coefficient data of a 
substance, and with a priori knowledge of exponents n and m, it is necessary 
to minimize 

A = >-~[Bexp(Ti)  - B ( T i ) ]  2 ( 9 )  
i=1 

with respect to c and a, where Bexo(T~) is the experimental second virial 
coefficient data at temperature T~, and n is the number of data available for a 
substance. This minimization will result in the following relation for ~r: 

(r = E B~xp(Ti)B*(Ti) [B*(Ti)] (10) 
i=1 i=1 

The right-hand side of Eq. (10) contains e, which can be calculated by 
solving the following nonlinear equation: 

In Eqs. (9) and (10), 

B*(T~) = B(T~)/bo (12) 

and 

OB*(r,) 
B*' (T , )  = e - -  & 

= 3 s  j(n - m) + 3(a EJ(,-m)+31, 
(13) 

3. CALCULATIONS AND RESULTS 

Equations (10) and (11) can be used for calculation of ~ and (r when 
exponents n and m are already available. In the case when exponents n and m 
are not known in advance, one should minimize A, given by Eq. (9), with 
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respect to ~, a, n, and m. In the case when we want to find the best values of n 
and m for a number of substances with similar shapes, we should minimize A 
of each substance with respect to ~ and a and minimize 

A1 + A2 + . . .  +As  

of all the s substances with respect to n and m. 
In order to observe the trend of any change in n and m with the shape of 

the molecules considered, only symmetrical molecules (molecules with 
central forces) are picked for the present study. In the minimizations 
performed, integer values for n and m were chosen, while values for E and a 

Table I. Most Appropriate Exponents and Coefficients of the Mie (n,m) Potential Functions 

for Different Groups of Symmetric Molecules with Similar Shapes 

Formula E/k(K) a(A) 

Group I (n,m) - (I2,7) Ar 150.7 3.298 

RMSD = 0.88 Kr 210.9 3.541 

RMSD (L J) - 2.40 Xe 282.4 3.939 
No. of data - 185 ~ 

Group lI (n,m) = (14,7) N 2 134.9 3.544 

RMSD = 0.62 02 169.3 3.247 
RMSD (L J) = 1.01 

No. of data = 107 ~ 
Group II l  b (n,m) - (14,7) NH3 1100 1.942 

RMSD = 6.00 PH 3 204.1 5.782 
RMSD (L J) - 10.30 

No. of data - 44 ~ 

Group IV C (n,m) - (28,7) CH 4 308.8 3.359 

RMSD - 25.50 CF 4 313.1 4.260 

RMSD (L J) - 30.22 CCl 4 839.2 5.270 

No. of data = 1 l &  SiF 4 313.9 4.940 

Group V a (n,m) - (35,7) C(CH3)4 790.0 4.777 

R M S D -  18.90 Si(CH3)4 605.6 6.295 
RMSD (L J) e 

No. of Data = 50 ~ 

~The second virial coefficient data are reported by J. H. Dymond and E. B. Smith, Second Virial 
Coefficients o f  Gases (Oxford University Press, Oxford, U.K., 1969); and E. A. Mason and 
T. H. Spurling. The Virial Equation o f  State  (Pergamon, London, 1968). 

bFor (n,m) values in the range of (14,7)-(21,7), RMSD was insensitive to n. As a result, (14,7) 
was chosen for this group. 

CFor (n,m) values in the range of (24,7)-(30,7), RMSD was insensitive to n. As a result, (28,7), 
which is also recommended by Hamon and Lambert  [16], was chosen. 

dFor (n,m) values in the range of (31,7)-(39,7), RMSD was insensitive to n. As a result, (35,7) 
was chosen. 

eThere exists no solution for this group with the use of the Lennard-Jones potential function. 
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were allowed to have significant figures consistent with the accuracy of the 
second virial coefficient data. The data points for which the deviation from 
predicted values based on the Lennard-Jones potential exceeded three times 
the root-mean-square deviation were eliminated. The remaining data points 
were used in the optimization calculations. The results of computations for 
five different groups of molecules with similar shapes are reported in Table I. 
For example, according to this table, the best exponents for the Mie potential 
function for spherical rare gas molecules (Ar, Kr, Xe) are "12" and "7". The 
root-mean-square deviation (RMSD) for this potential function, as defined 
by 

= IAAr + AK, + A• 
RMSD [ n A r + n K r + n x e J  

(14) 

is lower than the RMSD of the Lennard-Jones functions and any other Mie 
(n,m) potential function chosen. It should be pointed out that m = 7 is still in 
the range of the exponents of the London dispersion forces for spherical 
molecules [1, 7, 8]. 

Similar observations can be made for the other four groups of molecules 
reported in Table I. One interesting result of the coumputation presented in 
Table I is that the attractive parameter m = 7 is in common between all the 
groups of molecules considered. Also, it seems that the more the molecules 
deviate from sphericity, the repulsive parameter n increases further. 
However, one should not place too much significance on this trend of the 
repulsive parameter n with the shape of the molecules. For a thorough 
understanding of intermolecular forces, a multiproperty correlation approach 
should be used [11, 18]. But for the correlation of the second virial coefficient 
data to the Mie (n,m) potential function and the use of the resulting potential 
function in thermodynamic property calculations, the choice of the attractive 
parameter m = 7 seems to be consistently superior over m = 6. To make the 
matter simple, we would like to propose a Mie (14,7) potential function, 

(;) ] (15) 

for nonpolar-simple molecules. In Table II, the pair-potential parameters of 
33 different substances according to the Mie (14,7) and Lennard-Jones 
(12,6) potential functions are reported. The molecules chosen for Table II are 
those for which an adequate number of virial coefficient data are available in 
the literature. According to Table II, the least-square fits of the Mie (14,7) 
potential function for 28 out of the 33 molecules chosen are better than those 
of the Lennard-Jones potential function. 
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Table II. Intermolecular Potential Parameters for Lennard-Jones (12,6) and Mie (14,7) 
Potential Functions 

Lennard-Jones (12,6) Mie (14,7) 
No. of 

Formula ~/k (K) cr (~)  R M S D  a ~/k (K) ~ (~)  R M S D  ~ Data b 

Ar 119.0 3.438 0.66 170.0 3.219 0.68 82 
Kr 158.9 3.883 3.92 237.2 3.421 2.82 62 
Xe 220.3 4.135 1.34 320.7 3.830 1.02 41 
CH4 148.4 3.812 0.34 210.9 3.619 0.32 66 
CF4 151.4 4.750 0.92 214.7 4,520 0.53 23 
SiF4 147.5 5.650 0.65 211.6 5.320 0.61 8 
CCL 397.7 6.570 74.53 453,0 6.940 68,48 19 
N2 95.48 3.736 0.69 134.9 3.544 0.36 79 
02 115.7 3.535 1.59 169.3 3.247 1.04 28 
NO 99.8 4.294 6.48 I45.6 3.977 5.78 23 
CO 100.5 3.926 1.30 142.3 3.628 0.65 23 
CSz 262.8 6.661 55.65 475.8 5.325 55.63 21 
CO2 196.0 4.359 2.77 282.3 4.081 2.12 80 
SO2 171,6 7.253 14.96 248.5 6.774 13.89 31 
N20  155.7 5.450 9.89 229.7 5.009 9.05 38 
HzO 296.1 5.317 16.04 425.8 4.992 14.90 50 
NH3 900.0 2.108 13.50 I100 2.118 14.05 19 
PH 3 136.5 6.352 6.84 279.1 5.262 6.79 25 
CH3F 173.7 5.680 4.10 253.1 5.279 3.75 30 
CH3C1 940.9 2.378 17.86 891.3 2.740 16.39 32 
CH3Br 950 2.563 40.43 950.0 2.812 37.76 16 
CH31 1050 2.665 18.29 1050 2.926 18.21 10 
CH2F 2 186.9 6.254 6.52 283.3 5.646 6.23 11 
CH/C12 175.5 8.791 27.21 253.2 8.247 26.69 12 
CF2C12 253.7 5.622 5.41 343.7 4.093 7.91 21 
CCIF3 186.3 5.538 1.85 271.9 5.141 1.59 7 
CFCI 3 240.0 7.098 5.62 394.8 6.021 15.64 9 
CHCI~ 210.7 8.757 42.94 316.7 7.956 43.01 26 
CHCI2F 348.4 5.076 19.17 422.8 5.130 38.02 9 
CH3CH~ 182.2 5.388 14.53 279.7 4.800 12.19 83 
CH3CH2CI 158.1 9.701 68.09 227.8 9.108 67.47 16 
CHzCH2 159.5 5.378 10.73 238.8 4.885 9.32 81 
C H C H  109.4 8.288 6.50 156.9 7.817 6.02 27 

"Root-mean-square deviation, RMSD,  is defined as R M S D  -= {A/NI ~/2, and A is defined by Eq. 
(9). 

~'I'he data chosen for each compound are the ones that have an acceptable consistency as 
explained in the text. The source of the data is the same as in Table I. 
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